반응형
1. Data set 구성
Time series(seq len, time lag, pred len)
+ noies
Train val test split
2. Dataloader parameter
shuffle True
batch size
drop last => dynamic model in batch (not fix batch size)
batch first
4. model search
model architecture (RNN, LSTM, GRU, etc.)
hidden layers & nodes
classification
regressor
eval & train
5. pytorch model
model save & best loss model
6. drop out / batch normalization
7. learning rate & epochs
8. loss functions
MSE, RMSE
cross Entropy
9. Gpu & Env setting
10. scaling
반응형
'Ideas & study > 기초 개념 관련' 카테고리의 다른 글
base Stream (0) | 2024.01.17 |
---|